Honeywell MS4103 Video Gaming Accessories User Manual


 
259
APPENDIX
NOTE: The scaling constant 1.08 is derived as follows:
Where:
Simplifying the equation:
To find the scaling constant for air conditions other
than standard, divide 14.40 Btu by specific volume of
air at those conditions.
3. For sizing steam to hot water converter valves:
Where:
gpm = Gallons per minute of water flow through
converter.
TD
w
= Temperature difference of water entering
and leaving the converter.
0.49 = A scaling constant. This value is derived
as follows:
Simplifying the equation:
4. When sizing steam jet humidifier valves:
Where:
W1 = Humidity ratio entering humidifier, pounds
of moisture per pound of dry air.
W2 = Humidity ratio leaving humidifier, pounds
of moisture per pound of dry air.
= The specific volume of air at standard
conditions of temperature and
atmospheric pressure.
= Cubic feet per minute (cfm) of air from the
fan.
= A conversion factor.
Simplifying:
5. When Equivalent Direct Radiation (EDR) is known:
Where:
EDR (Total)=Radiators are sized according to
Equivalent Direct Radiation (EDR). If
controlling several pieces of radiation
equipment with one valve, add the EDR
values for all pieces to obtain the total
EDR for the formula.
0.24 = A scaling constant, lb steam/unit EDR.
See Table 4.
Table 4. Output of Radiators and Convectors.
STEAM VALVE PRESSURE DROP
Proportional Applications
When specified, use that pressure drop (h) across the valve.
When not specified:
1. Calculate the pressure drop (h) across the valve for good
modulating control:
h = 80% x (Pm-Pr)
NOTE: For a zone valve in a system using radiator ori-
fices use:
h = (50 - 75)% x (Pm-Pr)
Where
Pm = Pressure in supply main in psig or psia
(gage or absolute pressure).
Pr = Pressure in return in psig or psia. A
negative value if a vacuum return.
= the specific volume of air at standard
conditions of temperature and
atmospheric pressure.
1.08
0.24BTU
lbairF
-----------------------
60min
1hr
----------------×
1lbair
13.35ft
3
--------------------×=
1lbair
13.35ft
3
--------------------
1.08
14.40Bt umin
Fhr13.35ft
3
----------------------------------=
Q gpm TD
w
× 0.49×=
0.49
8.33lbwater
1gal
--------------------------------
60min
1hr
----------------×
1lbsteam
1000Btu
--------------------------×
1Bt u
lb water F
------------------------×=
0.49
0.49mi nlbsteam
galhrF
---------------------------------------------=
Q
W
1
W
2
()lbmoisture
lbair
-----------------------------------------------------------
1
13.35ft
3
lbair
--------------------
---------------------×
ft
3
min
----------×
60min
hr
----------------×=
13.35ft
3
lbair
--------------------
ft
3
min
----------
60min
hr
----------------
Average Radiator of
Convector
Temperature, Deg F
Cast Iron Radiator
Btu/Hr/EDR
a
Convector, Btu/
Hr/EDR
b
215 240 240
200 209 205
190 187 183
180 167 162
170 148 140
160 129 120
150 111 102
140 93 85
130 76 69
120 60 53
110 45 39
100 31 27
90 18 16
a At Room Termperature
b At 65 F Inlet Air Temperature
Q 4.49
W
1
W
2
()lbmoisture
hr
-----------------------------------------------------------=
Q EDR Total()0.24×=
Appendix A: Valve Selection and Sizing